Finding a Team of Experts in Social Networks

T. Lappas, K. Liu, E. Terzi Knowledge Discovery and Data Mining 2009

Presented by Alex Klibisz

Team Formation Problem

Given:

- Task requiring a set of skills
- Set of individuals
- Skills possessed by each individual
- Graph of communication cost between pairs of individuals
 - Different departments, languages, time zones, etc.

Find:

A subset of individuals containing all required skills with minimized communication cost

Related Work

- Match-making optimization
- Few have considered social graphs
- This work should be considered complementary

Terminology

- Cover: subset of all desired skills for which at least one individual possesses each skill.
- Support Set: set of individuals that posses a particular skill.
- *Distance Function:* returns weight of connection between two individuals or between one individual and the closest individual in a support set.

Problem Variations

- Different ways to measure and minimize Communication Cost
- Diameter-TF
- Minimum Spanning Tree TF

Diameter-TF

- Communication Cost = diameter of the graph of selected individuals
- NP-Complete: reduction of Multiple Choice Cover Problem
- NP-Hard: when distance function is a metric

MST-TF

- Communication Cost = cost of Minimum Spanning Tree over selected individuals
- NP-Complete, NP-Hard: reduction of Group-Steiner Tree Problem

Diameter-TF: Solution, RarestFirst

- Compute the support for every skill, a, required by task T:
- 2. Pick the rarest skill, a rare
- 3. For every person in $support(a_{rare})$, connect the person to the closest support of every other skill

Details

- Assume pre-computed shortest paths between pairs
- Time complexity = $O(|S(a_{rare})| \times n)$ for n individuals
- Worst-case = $O(n^2)$

Diameter-TF Example

Given:

$$X = \{ A, B, C, D \}$$

$$T = \{ 1, 2, 3 \}$$

Apply RarestFirst:

$$a_{rare} = 3, s(3) = \{ D \}$$

$$D \rightarrow s(1): \{A, D\}$$

$$D \rightarrow s(2)$$
: { A, C, D }

Result

$$X' = \{ A, C, D \}$$

$$CC-D(X') = 1$$

MST-TF: Solution 1, CoverSteiner

For set of individuals X, task T:

- 1. $X_0 = GreedyCover(X, T)$
- 2. $X' = SteinerTree(G, X_0)$

GreedyCover: Find a set of individuals that covers all skills in T

- 1. While covered skills != T
 - a. Add individual with most uncovered skills

SteinerTree: Find minimum cost spanning tree for X_0

1. While $X' != X_0$ a. Find single node v^* from X_0 that has min distance to X'

CoverSteiner cont.

Time Complexity

- GreedyCover = $O(|T| \times |X|) = O(mn)$;
 - m is the number of skills in T, n is the number of total individuals
- SteinerTree = $O(|X_0| \times |E|)$
 - E are the edges connecting individuals
- Worst-case = $O(n^3)$

Flaw

 Step 1 completely ignores the graph structure, leading to high communication costs

MST-TF: Solution 2, *EnhancedSteiner*

H, Y = EnhanceGraph(G, T)
X_H = SteinerTree(H, {Y₁, ..., Y_k})
X' = X_H \ {Y₁, ..., Y_k}

EnhanceGraph: Add artificial nodes, edges to minimize SteinerTree communication cost

- 1. For every skill a in T
 - a. Create an additional node Y_{i}
 - b. Connect node Y_{ij} to all individuals with skill a_{ij} with large weight
 - c. All nodes with skill a_i are represented as a clique

Experimental Evaluation

- DBLP: papers in databases, data mining, artificial intelligence, theory
- Skills derived from common terms in paper titles
- Communication weights determined by co-authorship
- 5509 individuals, 1792 skills
- Tasks generated with 2 to 20 skills
- Average over 100 combinations for final values

Performance: Communication Cost

Performance: Team Cardinality

Team Formation Results

Rank	Actual authors	RarestFirst result	EnhancedSteiner result
1	S. Brin, L. Page	Paolo Ferragina, Patrick Val-	P. Ferragina ,J. Han, H. V.
		duriez, H. V. Jagadish, Alon	Jagadish, Kevin Chen-Chuan
		Y. Levy, Daniela Florescu Di-	Chang, A. Gulli, S. Muthukrish-
		vesh Srivastava, S. Muthukrishnan	nan, Laks V. S. Lakshmanan
2	R. Agrawal, R. Srikant	R. Agrawal	Philip S. Yu
3	R. Agrawal, T. Imielinski, A. N.	Philip S. Yu	Wei Wang, Philip S. Yu
	Swami		
4	T. Joachims	Wei-Ying Ma, Gui-Rong Xue,	J. Han, H. Lu, Wei-Ying Ma,
		H. Liu, J. Han, H. Lu, Z. Chen,	Z. Chen, H. Liu, Gui-Rong
	NO. NO. WILL BE NO. 10	Q.Yang, H. Cheng	Xue, Q. Yang
5	J. Lafferty, F. Pereira, A. McCal-	A. McCallum	A. McCallum
	lum		
6	J. Han, J. Pei, Y. Yin	F. Bonchi	A. Gionis, H. Mannila, R.
25			Motwani
7	E. Rahm, P. A. Bernstein	C. Bettini, R. Agrawal, Kevin	C. Bettini, P. A. Bernstein,
		Chen-Chuan Chang, T. Imielin-	H. Garcia-Molina, S. Jajodia, D.
		ski, H. Garcia-Molina, D. Barbara,	Maier, D. Barbara
		S. Jajodia	
8	R. Agrawal, J. Gehrke, D. Gunop-	D. Gunopulos, R. Agrawal	R. Agrawal, D. Gunopulos
	ulos, P. Raghavan	M T 0	W W W W W D G !
9	B. Babcock, S. Babu, M. Datar, R.	M. T. Ozsu	H. V. Jagadish, D. Srivastava
10	Motwani, J. Widom	David Karamana David I	M. I. Conson M. I. Franklin D.
10	J. Chen, D. J. DeWitt, F. Tian, Y.	Donald Kossmann, David J.	M. J. Carey, M. J. Franklin, D.
	Wang	DeWitt, Michael J. Franklin,	Kossmann, D. J. DeWitt
		Michael J. Carey	

Thoughts

- Limited Dataset
 - Does using titles for skills actually reflect the skills?
 - Not all authors on a paper have all of the skills
- Problem variation
 - Quantify the quality of a person's skill
- Replicate with Kaggle team data:
 - Create a "skills" feature for each competition and individual (ex: classification, regression, computer vision)
 - Compare generated teams to actual teams