Network-Based Modeling and Analysis of Systemic Risk in Banking Systems (4B)

Hu, Zhao, Hua, Wong, MIS Quarterly 2012

Presented by Alex Klibisz, UTK STAT 645, 9/13/16

Outline

- Background
- Purpose
- Related Work
- Network Approach to Risk Management, NARM
 - Modeling systemic risk as networks
 - Link Aware Systemic Estimation of Risks, LASER
 - Simulating risk scenarios, evaluating LASER
- Caveats and Thoughts

Background

- Publication: MIS Quarterly, special issue on BI Research.
- Context: business intelligence for systemic risk in banking.
- Authors: broad backgrounds (business intelligence, economics, banking, computer science)

Background - Terms

- Systemic Risk risk imposed by relationships among banks.
- Contagious Failure failure in a banking system propagates.
 - Example: 2008 US banking collapse, > 160 banks failed
- Capital Injections banks given or loaned money to continue operating.
- Modern Portfolio Theory
 - Investment methodology
 - Asset risk is the standard deviation of the asset's returns.
 - Portfolio risk is the variance of the portfolio's returns.
 - Risk reduced by including assets whose returns are not positively correlated.

Related Work

- Well-studied
 - Sources of systemic risk
 - Risk management for individual banks
 - Interbank payment obligations
 - Modern Portfolio Theory
- Elsinger *Risk Assessment for Banking Systems* referenced ~20 times

Purpose

Create a framework that will:

- 1. Model systemic risk using network and financial principles.
- 2. Order banks by systemic risk.
- 3. Predict which banks will fail.
- 4. Determine which banks get capital injections, and how much.

Network Approach to Risk Management, NARM

- 1. Model systemic risk as networks
 - a. Interbank payments as a network
 - b. Correlated assets as a network
- 2. Simulate and evaluate risk scenarios
 - a. Build scenarios with real-world data sets
 - b. Apply market shock
 - c. Apply capital injection
 - d. Evaluate LASER on simulations
- 3. LASER Algorithm to determine failed banks and cash injections
 - a. CRINP, HITS
 - b. Hub, Authority measurement and sorting

Figure 2. An Illustration of the Network Approach to Risk Management

Network Approach to Risk Management, NARM

1. Model systemic risk as networks

- a. Interbank payments as a network
- b. Correlated assets as a network

2. Simulate and evaluate risk scenarios

- a. Build scenarios with real-world data sets
- b. Apply market shock
- c. Apply capital injection
- d. Evaluate LASER on simulations

3. LASER Algorithm to determine failed banks and cash injections

- a. CRINP, HITS
- b. Hub, Authority measurement and sorting

Interbank Payments as a Network

- Failure scenario

A \$ > B \$ > C \$ \$ >

- Bank A owes bank B, bank B owes bank C, ...
- Market shock causes bank A default to B, B default to C, ...
- Network Model
 - Banks are nodes, payment obligations are directed edges.
 - Network represented as matrix L, l_{ii} represents bank i's payment obligation to bank j.
 - Clearing payment vector p_i^* represents i's ability to pay off all obligations (eq. 10)
 - Consider available reserve capital and financial asset portfolios
- Algorithm for Payment Clearing Process (Figure 3)
 - Determine the sequence of banks that will fail

Correlated Assets as a Network

- Failure scenario
 - Multiple banks own common or positively correlated assets
 - Assets rapidly lose value, causing banks to default and fail

- Network Model

- Based on modern portfolio theory, banking system is *portfolio*, a bank is an *asset*.
- Calculate: systemic risk of a banking system (eq. 4), systemic risk of an individual bank (eq. 5), systemic risk of a pair of banks (eq. 6), correlation coefficient ρ_{ij} for a pair of banks (eq. 7).

Shared Financial Assets:

Interbank Payment Links

Banks:

- Nodes are banks, edges are correlation coefficients; only include edges above a threshold $ho_{
 m s}$, fixed at 0.5
- Eq. 5 later used in LASER calculation of Hub and Authority scores

Network Approach to Risk Management, NARM

1. Model systemic risk as networks

- a. Interbank payments as a network
- b. Correlated assets as a network

2. Simulate and evaluate risk scenarios

- a. Build scenarios with real-world data sets
- b. Apply market shock
- c. Apply capital injection
- d. Evaluate LASER on simulations

3. LASER Algorithm to determine failed banks and cash injections

- a. CRINP, HITS
- b. Hub, Authority measurement and sorting

Hyperlink-induced topic search Algorithm (HITS)

- Rank the importance of web pages, Kleinberg (1999)
- Measure a web page's relative importance
 - Authority score: relative importance of a web page
 - Hub score: relative influence on other pages
- Web pages and banks
 - Web pages have links, banks have interbank relationships
 - As bank's interbank relationships increase, its failure's influence on other banks increases.

Correlative Rank-in-Network Principle (CRINP)

- Summarizes HITS algorithm.
- Definition 4: A node's prominence in a characteristic depends on:
 - 1) Number of incoming links
 - 2) Prominence of this characteristic on the source nodes
- Systemic risk a bank receives in the banking system depends on:
 - 1) Number and amount of incoming payments from other banks.
 - 2) Number and levels of correlation with other banks' financial asset portfolios.
 - 3) Systemic risk level of the other banks.

Hub and Authority Measurement and Sorting

- Link Aware Systematic Estimation of Risks, LASER
- Authority score: systemic risk *received* from other banks.
- Hub score: systemic risk *imposed* on other banks.
- Higher score implies higher risk.
- Algorithm described in Figure 4
 - Input: banks, interbank payment matrix, correlated portfolio coefficients
 - Output: ranked list of banks by authority score and hub scores

$$Au_{i} = \sum_{j \in A} G(j) \frac{O_{ji}}{\sum_{u \in U} O_{ui}} Hub_{j}$$

$$Hub_{i} = \sum_{j \in C} G(j) \frac{I_{ij}}{\sum_{v \in V} I_{iv}} Au_{j}$$

$$G(i) = \sum_{y \in Y} w_{i} w_{y} \sigma_{i} \sigma_{y} \rho_{iy}$$

$$(13)$$

Hub and Authority Measurement and Sorting

- Intuition

- Authority score identifies first banks to fail in contagious failure scenarios.
- Hub score identifies banks whose failure will have largest negative impact.
- Banks with high hub scores should receive cash injections to stabilize the system.

Network Approach to Risk Management, NARM

- 1. Model systemic risk as networks
 - a. Interbank payments as a network
 - b. Correlated assets as a network

2. Simulate and evaluate risk scenarios

- a. Build scenarios with real-world data sets
- b. Apply market shock
- c. Apply capital injection
- d. Evaluate LASER on simulations
- 3. LASER Algorithm to determine failed banks and cash injections
 - a. CRINP, HITS
 - b. Hub, Authority measurement and sorting

Build Scenarios with Real-World Data Sets

- 18 quarters Fedwire (interbank payment).
- 38 quarters FDIC call reports (assets, asset correlation).
- Mergers and acquisitions excluded.
- End up with 18 quarters of base scenarios with 7,822 banks.
- Simulations applied on first day after close of a quarter.

Apply Market Shock

- Apply non-significant random change to returns using CAPM equation
- Apply significant negative shock caused by external sources
 - Shock rate β is the proportion of portfolio value lost in a shock.
 - β = 1.4 is sustainable, β = 2.0 causes ~70% of banks to fail.
 - Evaluation focuses on $1.5 \le \beta \le 2.0$.
- 5 percent of banks receive shock based on Authority scores.

Apply Capital Injection

- 5 percent of banks selected based on Hub scores.
- Inject a percentage of the bank's asset portfolio, γ
 - $\gamma = \{100, 200, 300, 400, 500\}$

Evaluate LASER on Simulations - Method

- 1. Generate base scenarios
- 2. Generate systemic risk scenarios
 - a. Market shock
 - b. Market shock followed by cash injection
- 3. LASER determines failed banks, large-risk banks.
- 4. Evaluate
 - a. Banks that actually failed vs. LASER list, F-score
 - b. Effects of capital injection, reduction rate
 - c. Compare a. and b. against four baselines with thorough explanations

Evaluate LASER on Simulations - Results

- LASER outperforms baselines in classifying failed banks (Table 2)
 - F-score between 0.2 and 0.47
- LASER cash injections outperforms in reducing failure rate (Table 3)
 - 13% to 38% of banks "saved" on average

Caveats and Thoughts

- Possible inaccuracies in correlation, because MPT ignores taxes and transaction fees.
- LASER requires high-quality financial data, not always available.
- Several variables determined by domain experts opinion.